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Purely vibrational energy levels and partition functions are calculated using 
three different potential energy surfaces for the H20 molecule. Results 
obtained with perturbation-theory, independent-normal-mode (INM), and 
harmonic approximations are compared with accurate values. For the cases 
considered here, the expected improvement that perturbation theory provides 
over the corresponding harmonic treatment is found to be substantial, while 
the INM approximation leads to results which are worse than the correspond- 
ing harmonic ones. In fact, we show that reliable partition functions for these 
potential surfaces can be obtained when resonance contributions are removed 
from the perturbation-theory treatment, and we propose a theoretical criterion 
for deciding when a particular interaction should be treated as resonant. 
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I. Introduction 

The efficient calculation of reliable quantum mechanical vibrational partition 
functions as a function of temperature for a given potential energy surface is a 
basic problem in chemical physics. One example of a situation where the need 
for such a calculation arises is the activated complex method for calculating 
unimolecular and bimolecular reaction rate constants. However, since the direct 
computation of the quantum mechanical vibrational partition function involves 
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solving for the quantum vibrational levels of the given potential, exact calculations 
are impractical for all but the simplest systems (~<3 atoms). 

One common alternative is to use the harmonic approximation, for which the 
energy levels and partition functions are given by simple functions of the normal- 
mode frequencies [1]. Unfortunately, the harmonic approximation can lead to 
partition functions and rate constants which are fairly inaccurate [2-7]. A possible 
improvement to the harmonic approximation involves the inclusion of anharmon- 
icity within each normal mode, but neglecting the mode-mode  couplings [1, 6]. 
In this independent-normal-mode (INM) approximation, the energy levels are 
simply sums of individual normal-mode energies which either can be computed 
by an accurate one-dimensional calculation or can be modelled in a practical 
manner, e.g. by a Morse model. However, we show below that the INM approxi- 
mation can lead to worse results than the harmonic approximation. Such behavior 
indicates that the net anharmonic effect due to the mode-mode  couplings is larger 
but in the opposite direction from that due to the anharmonicities within the 
normal modes for the cases considered here. Another alternative to the exact 
solution of the vibrational energies is provided by the standard perturbation- 
theory treatment of Nielsen [8, 9], which includes the effects of cubic anharmonic- 
ity through second order and those of quartic anharmonicity through first order. 
Although this approach does not necessarily yield accurate excited-state energies 
[4, 10, 11], the zero-point energy and the distribution of excited-state energies 
(i.e., the density of states) may be accurate enough to provide reliable partition 
functions, especially at lower temperatures. This is the basic question with which 
the present study is concerned. 

An additional aspect of the present study is the effect of  different treatments of 
vibrational resonances. These resonances, which occur when two or more unper- 
turbed (harmonic) states are close in energy relative to the cubic anharmonic 
force constant which couples them, lead to a breakdown of perturbation theory. 
The standard approach in such circumstances is to remove the effects of the 
resonance from the perturbation-theory results and then to account for the 
interaction of the affected levels more correctly by diagonalizing the Hamiltonian 
matrix for these levels [8, 9]. For the numerical examples presented in this paper 
we show that in order to obtain accurate partition functions it is indeed important 
to remove resonance effects from the perturbation-theory energy levels, but that 
diagonalizing the Hamiltonian matrices for the resonant levels is not very impor- 
tant. (We note in passing that a previous application [4] of perturbation theory 
to obtain the partition functions for H20 and SO2 ignored the effects of  such 
resonances.) In addition, we propose an operational criterion for deciding when 
the effects of resonance may be important. 

As a precursor to the calculation of reliable vibrational partition functions in 
larger molecules and transition-state structures, this paper addresses the issues 
outlined above as they apply to three potential energy surfaces for H20 derived 
from the Hoy-Mills-Strey (HMS) quartic general force field [12], the 
Romanowski-Bowman (RB) quartic normal-mode force field [13] obtained by 
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the method of program SURVIB [14] from a quartic internal-coordinate force 
field fit to ab initio many-body perturbation-theory calculations [15], and a quartic 
normal-mode force field obtained from a modified version of the H20 portion 
of the Schatz-Elgersma (MSE) potential energy surface for the OH + H2 system 
[ 16]. These potentials were chosen because they are different more-or-less realistic 
descriptions of the vibrational potential energy surface for H20 that are fairly 
anharmonic, but in somewhat different ways. In addition, accurate quantal 
vibrational energies either were available or could be computed without undue 
effort for these potentials, thus affording a stringent test of the results for various 
approximations. Although the neglect of terms of order higher than fourth in 
these normal-mode force fields implies that they may not accurately model the 
internal-coordinate or analytic potential energy surfaces from which they are 
derived (see below), their neglect is justifiable in the present study in that (a) 
vibrational energy levels presented below are computed through fourth order 
consistently for each method, and (b) for larger and transition-state systems, for 
which the perturbation-theory approach described below is proposed, reliable 
potential energy information on normal-mode terms of order higher than fourth 
is not commonly available. The present study is restricted to a total angular 
momentum J = 0 only, and, except for the HMS surface, rotational and Coriolis 
effects have been omitted. 

2. Potential energy surfaces 

In applying the standard perturbation-theory treatment of Nielsen [8, 9] to the 
H20 molecule, the potential energy is expressed in dimensionless normal-mode 
coordinates through quartic terms as 

h 1 2 3 2 V~ c =~ ~ o)~q~ + k~11q~ + k~22q~q~ + k133qlq3-b kmq21q2 
i 

+ k222q3 + k233q2q23 + kllllql 4+ kl122q2q2+ kl133q2q 2 

"1- k2222q 4 -I- k2233 q~q2 + ]s q3- (1) 

Throughout this paper, we use the standard assignment of the symmetric stretch 
to mode 1, the bend to mode 2, and the asymmetric stretch to mode 3. Thus, 
terms involving an odd power of q3 are absent from Eq. (1). In addition, certain 
quartic terms which do not affect the perturbation-theory energy levels have been 
omitted from Eq. (1). 

The normal-coordinate force constants for the three potential energy surfaces 
used in the present study are listed in Table 1. For the HMS surface, the force 
constants are the same as those used in a previous application [4] of perturbation 
theory to obtain the vibrational partition function for H20, and were computed 
from the curvilinear internal-coordinate quartic force field of [12] using a com- 
puter program described elsewhere [17]. For the RB surface, the force constants 
for the potential given in Eq. (1) were derived from the mass-weighted cartesian 
normal-coordinate force constants of the quartic force field for HeO given in the 
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Table 1. Dimensionless normal-coordinate force constants (in 
cm -1) for H20 

HMS RB MSE 

w x 3831.94 3846.07 3865.32 
w 2 1648.88 1684.47 1687.44 
to 3 3942.55 3954.87 3975.43 
knx -302.70 -306.12 537.93 
k112 53.18 40.99 -222.40 
k12 2 167.54 151.38 -221.52 
kl33 -928.37 -919.54 947.29 
k222 -63.62 -43.01 129.89 
k233 138.92 136.35 -161.17 
kl 111 31.90 31.65 52.24 
k1122 -85.67 -75.87 6.50 
k1133 201.49 191.10 174.88 
Is 2.09 -2.30 7.40 
k2233 -101.22 -91.85 -63.10 
k3333 35.44 32.10 33.64 

m a n u a l  to the  P O L Y M O D E  p r o g r a m  [13]. This n o r m a l - m o d e  force  field was 
ob t a ined  f rom the quar t i c  curv i l inear  i n t e rna l - coo rd ina t e  force field fit by  Bart let t  
et al. [15] to the i r  D-MBPT(oo)  set o f  ab initio m a n y - b o d y  p e r t u r b a t i o n - t h e o r y  
energies.  No te  that  the full  quar t ic  force field given in [13] conta ins  some quar t ic  
terms which  do  not  a p p e a r  in Eq. (1), and  have been  omi t t ed  in the  p resen t  
s tudy.  The force cons tan ts  F 2 ,  F 3 ,  and  F 4  in [13] are  given in a tomic  units with 
respect  to the  mass -we igh ted  norma l  coord ina tes .  To conver t  these into the 
d imens ion les s  n o r m a l - c o o r d i n a t e  force cons tants  in cm 1 n e e d e d  here  [8, 9, 12], 
we used  the re la t ions  

o3i = ( 2 F 2 i )  '/2, (2) 

to i = o3,r, (3) 

kijk = F3~jk( g~iwjg~k)-l/2 r, (4) 

and  

ki~jj = F4~jj( ~iwj)- l  r, (5) 

where  a3~ is the  f r equency  o f  m o d e  i in a tomic  units  and  r = 219474.627 cm 1/a.u. 

The force  cons tan ts  for  the  M S E  surface were de r ived  f rom a modi f i ed  vers ion  
o f  the H 2 0  a sympto t i c  r eg ion  o f  the ana ly t ic  S c h a t z - E l g e r s m a  po ten t i a l  energy 
surface for  the  O H + H 2  sys tem [16] as fol lows.  Using  a p r o g r a m  desc r ibed  
e lsewhere  [6], the equ i l ib r ium geomet ry  X0 in mass -we igh ted  car tes ians  was 
loca ted  and  a n o r m a l - m o d e  analys is  was pe r fo rmed .  Thi rd  and  four th  der ivat ives  
o f  the po ten t i a l  energy  with respect  to the  mass -we igh ted  no rma l  coord ina te s  
were then  f o u n d  efficiently f rom second  and  th i rd  numer ica l  der ivat ives  of  the 
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analytic gradient of the potential 17 V along the normal-mode directions Li, i.e. 

1 
93 Viii = ~~ [17 V ( Xo --~ ~ Li ) n t- 17 V ( Xo - ~ Li ) - 217 V(Xo)] �9 Lj (6) 

and 

D,  V~j = 2-~ [17 V( Xo + 8L, + 6Lj) - 2V V( Xo + 8Lj) + V V( Xo - 8L~ + 8Lj) 

- V  V(Xo + 6 L , -  6L~) + 2V V ( X o -  8Lj) - V  V(Xo - t~L, - 6 L ~ ) ]  �9 Ly, 
(7) 

where i <-L for a small step size 8 (typically 0.0001 a.u.). These derivatives were 
converted into mass-weighted normal-coordinate force constants by the relations 

F3 iii 1 = gD3 V/ii, F3io = ~D 3 V//j, 

! D  V,,, and _ l (8) F 4 i i i i  = 24 4 F4ii~ - xD4 Vujj, 

where i•j ,  and then transformed into dimensionless normal-coordinate force 
constants through the use of Eqs. (4) and (5). However, we then found that the 
quartic force field of Eq. (1) with force constants obtained in this manner, i.e. 
from the true derivatives of the potential energy at the equilibrium geometry, 
does not adequately model the actual analytic potential energy in a large enough 
region about the equilibrium geometry to allow convergence to a valid ground- 
state energy in the vibrational SCF calculations described below. For example, 
even though the actual Schatz-Elgersma potential energy surface increases 
monotonically along the mode 2 direction, the quartic force field of Eq. (1) with 
force constants derived from the derivatives of the potential at the equilibrium 
geometry possesses a maximum of only 7.35 kcal/mol (2570 cm -1) at a distance 
qa = 3.241 in this direction. Although we were unable to eliminate the problem 
of maxima within the vibrational well, we improved the fit to the actual Schatz- 
Elgersma surface and obtained sufficiently high barriers in a larger region about 
the equilibrium geometry by varying the values of most of the cubic and quartic 
force constants in Eq. (1). The best set of force constants we obtained were 
determined as follows. Keeping the frequencies fixed, we chose k l l  I and k1111 by 
a fit of Eq. (1) to the actual potential at the points (ql, q2, q3) = (+6.63545, 0, 0), 
k222 and k2222 by a fit at (0, +8.76843, 0), k3333 by a fit at (0, 0, 5.38343), k233 and 
k2233 by a fit at (0, a:8.76843, 5.38343), and kl12, k122, and kin2 by a fit at the 
three points (6.63545, +8.76843, 0) and (-6.63545, -8.76843, 0). The resulting set 
of modified force constants are listed in Table 1. The potential energy surface of 
Eq. (1) obtained with these force constants rises monotonically along each 
normal-mode direction, but has a barrier of about 14 kcal/mol (5000 cm -1) in 
the (ql > 0, q2 <0)  quadrant. This barrier is high enough to allow the VSCF-CI 
calculation described below to converge for several of the lowest vibrational 
levels, and this is sufficient for the partition function calculations presented herein. 
Note that since the present study is concerned with the accuracy of the vibrational 
partition functions for a given potential energy surface rather than the computa- 
tion of accurate vibrational partition functions for the H20 molecule, the fact 



498 A. D. Isaacson and X-G. Zhang 

t h a t  t h e  se t  o f  c u b i c  a n d  q u a r t i c  f o r c e  c o n s t a n t s  f o r  t h e  M S E  s u r f a c e  a r e  s o m e w h a t  

d i f f e r e n t  f r o m  t h o s e  f o r  t h e  H M S  a n d  R B  s u r f a c e s  is n o t  a p r o b l e m .  I n  fac t ,  it 

is a d v a n t a g e o u s  in  t h a t  i t  a l l o w s  t h e  t e s t s  o f  t h e  a c c u r a c y  o f  t h e  v a r i o u s  a p p r o x i m a -  

t i o n s  d i s c u s s e d  b e l o w  to  b e  c a r r i e d  o u t  f o r  m o r e  t h a n  o n e  k i n d  o f  a n h a r m o n i c  

b e h a v i o r .  

3. Energy levels 

T h e  l o w e s t  e n e r g y  l eve l s  f o r  t h e  H M S ,  RB ,  a n d  M S E  p o t e n t i a l s ,  m e a s u r e d  f r o m  

t h e  b o t t o m  o f  t h e  p o t e n t i a l  wel l ,  a re  p r e s e n t e d  in  T a b l e s  2 - 4 ,  r e s p e c t i v e l y .  T h e  

a c c u r a t e  l eve l s  f o r  t h e  H M S  p o t e n t i a l  h a v e  b e e n  c o m p u t e d  b y  C a r n e y  et  al. [18,  

19]. F o r  t h e  a c c u r a t e  l eve l s  f o r  t h e  R B  s u r f a c e ,  we  p e r f o r m e d  a v i b r a t i o n a l  

S C F - C I  c a l c u l a t i o n  u s i n g  t h e  P O L Y M O D E  p r o g r a m  [13,  20].  I n  t h i s  c a l c u l a t i o n  

we  u s e d  t h e  virtual b a s i s  [21,  22]  o b t a i n e d  f r o m  a V S C F  c a l c u l a t i o n  o n  t h e  

g r o u n d  s ta te ,  i n  w h i c h  t h e  C o r i o l i s  i n t e r a c t i o n  a n d  W a t s o n  t e r m s  w e r e  o m i t t e d  

a n d  e a c h  v i b r a t i o n a l  m o d a l  w as  e x p a n d e d  as  a l i n e a r  c o m b i n a t i o n  o f  25 h a r m o n i c  

o s c i l l a t o r  f u n c t i o n s .  F o r  t h e  C I  c a l c u l a t i o n ,  c o n f i g u r a t i o n s  (i.e. p r o d u c t s  o f  

m o d a l s )  IVID2V3) were i n c l u d e d  f o r  v~ = 0 , . . . ,  8, v 2 = 0 , . . . ,  11, a n d  v 3 = 0 ,  2, 4, 

Table 2. Energy levels (in cm -I) for the HMS surface 

State Ace. a p.t. b p.t. p.t. p.t. p.t. INM g H h 
Ol /)2 /)3 -~- corr. + corr. + corr. + corr. 

(p=0.25)  c (p=0.25)  (p=0.20)  e (p=0.20) 
+ diag'nfi + diag'n, f 

0 0 0 4652 4634 4629 4629 4649 4649 4717 4712 
0 1 0 6249 6232 6227 6227 6247 6247 6368 6360 
0 2 0 7 811 7 795 7 803 7 789 7 823 7 809 8 007 8 009 
1 0 0 8369 8290 8 272 8286 8 345 8302 8480 8 543 
0 0 1 8473 8388 8384 8384 8403 8403 8775 8654 
0 3 0 9336 9325 9360 9318 9380 9338 9634 9658 
1 1 0 9952 9871 9 827 9868 9900 9883 10 130 10 192 
0 1 1 10 055 9965 9 960 9 960 9 980 9 980 10 454 10 303 
0 4 0 10828 10 822 10896 10 816 10915 10837 11 249 11307 
1 2 0 11 498 11419 11362 11 410 11435 11 425 11769 11841 
0 2 1 11602 11508 11517 11497 11537 11517 12121 11952 
2 0 0 12 072 11 860 11 829 11 860 11 955 11 864 12 193 12 375 
1 0 1 12 173 11 878 11 860 11 879 12 039 11 880 12 537 12 486 
0 0 2 12 278 12 047 12 042 12 042 12 009 12 067 12 929 12 596 

a Accurate ([18, 19]) 
b Perturbation theory without resonance corrections 
c Perturbation theory with correction for k~22 resonance 
a Perturbation theory with correction for k122 resonance and diagonalization for affected states 
e Perturbation theory with corrections for k122 and k~33 resonances 
r Perturbation theory with corrections for ka22 and k133 resonances and diagonalization for affected 
states 
g Accurate levels for the independent-normal-mode surface containing only the diagonal force 
constants 
h Harmonic 
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State Ace. b p.t. p.t. p.t. p.t. p.t. 

v~ v 2 v3 + corr + corr + corr + corr 
(p = 0.25) (p = 0.25) (p = 0.20) (p = 0.20) 

+ diag'n. + diag'n. 

INM H 

0 0 0 4683 4656 4652 4652 4671 4671 4754 4743 
0 1 0 6 293 6276 6 271 6 271 6 291 6 291 6 423 6427 
0 2 0 7 871 7 862 7 869 7 856 7 889 7 876 8 076 8 112 
1 0 0 8383 8 321 8 304 8 317 8 376 8 331 8 526 8 589 
0 0 1 8 467 8 401 8 397 8 397 8 416 8 416 8 801 8 698 
0 3 0 9 410 9413 9 445 9409 9464 9428 9710 9 796 
1 1 0 9942 9926 9885 9921 9957 9935 10 195 10273 
0 1 1 10002 9973 9 969 9969 9 988 9988 10470 10 382 
0 4 0 10903 10931 10999 10930 11018 10950 11 327 11480 
1 2 0 11472 11497 11444 11485 I1516 11498 11848 11958 
0 2 1 t1505 11511 11 519 11503 11538 11522 12 122 12066 
2 0 0 12 047 11 896 11 877 11 892 11 991 11 898 12 245 12435 
1 0 1 12109 11894 11867 11895 12053 11891 12573 12544 
0 0 2 12 209 12 046 12 041 12 041 12 009 12 066 12 936 12 652 

a See Table 2 for a description of the method used for each column 
b Accurate (present work) 

6, 8 or 1, 3, 5, 7, 9, depending on the symmetry of the states desired, yielding a 
total of 540 configurations for each symmetry. That the virtual modals obtained 
with the ground state as the reference state for the VSCF calculation provide a 
good basis set for describing excited states in the CI calculation has been observed 
elsewhere [23]. In the present study, we demonstrated the validity of this approach 
for the RB surface by performing the same VSCF-CI calculations using the full 
quartic force field of [13], which contains certain quartic terms omitted from the 
RB surface, and including the Watson and Coriolis interaction terms. The energy 
levels obtained by this approach were found to be in very good agreement with 
accurate ones [22] obtained from individual large-scale VSCF-CI calculations, 
in which each state of interest was used for the VSCF reference state [23]. In 
fact, for the 24 energies listed in [22], the largest errors obtained with the present 
approach were 22 and 9 era-l: for the highly excited ]131) and ]032) states, 
respectively; the other 22 levels agreed within 6 cm -1, with 18 of them agreeing 
within 1 cm -1. 

The accurate levels for the MSE surface were computed by the same VSCF-CI 
procedure described for the RB surface, However, owing to the barrier in the 
ql - q2 plane discussed above, levels with more than around 5000 cm -1 of energy 
available in these modes could not be converged either in the number of SCF 
basis functions or in the number of CI configurations. The lowest eight converged 
energy levels are listed in Table 4, along with several unconverged levels whose 
values are given in parentheses. (In some cases, the largest CI coefficient in the 
expansion for two unconverged levels corresponded to the same configuration.) 

In the standard second-order perturbation-theory scheme of Nielsen [8], the 
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State Acc. b'c p.t. p.t. p.t. p.t. p.t. 
/)1 /)2 /)3 +corr.  +corr.  +corr.  +corr.  

(p=0 .25)  (p=0.25)  (p=0.20)  (p=0.20)  
+ diag'n. + diag'n. 

INM H 

0 0 0 4796 4793 4783 4783 4804 4804 4716 4764 
0 1 0 6404 6403 6394 6394 6 414 6414 6350 6452 
0 2 0 7893 7921 7937 7911 7957 7932 7928 8139 
1 0 0 8 403 8 428 8 393 8 419 8 469 8 443 8 152 8 629 
0 0 1 8883 8 871 8861 8861 8 882 8 882 8788 8740 

0 3 0 {9160~ 9347 9413 9352 9433 9374 9452 9826 
/ / 

\ 9  335/ 

1 1 0 (9944) 10044 9959 10020 10034 10044 9786 10317 
0 1 1 10522 10506 10497 10497 10517 10517 10422 10427 
0 4 0 (10537) 10681 10822 10718 10842 10740 10921 11514 
2 0 0 (11029) 11630 11570 11713 11701 11775 11160 12495 

0 5 0 /11354~ 11923 12163 12012 12184 12035 12336 13201 
/ / 

\ 12 256,/ 

1 2 0 / 11691 ]  11567 11458 11419 11533 11472 11365 12004 
/ / 

\12O88]  

0 2 1 12069 12049 12065 12050 12086 12071 12001 12114 

1 3 0 {12834] 12998 12873 12888 12964 12879 12889 13692 
/ l 
\13  298] 

1 0 1 12 906 12 907 12 889 12 813 13 058 12 889 12 224 12 605 
0 0 2 (12931) 12839 12829 12829 12795 12846 12951 12715 

a See Table 2 for a description of  the method used for each column 
b Accurate (present work) 
~ Values in parentheses represent unconverged levels. In some cases, the same configuration had 
the largest coefficient in two CI eigenvectors 

v i b r a t i o n a l  e n e r g y  l e v e l s  a r e  a p p r o x i m a t e d  b y  

E ...... /hc = Y. wi(vi +�89 +Z 1 �9 E Xij(Vi  ~ -~ ) (V j  "~-�89 
i j ~ i  

w h e r e  

I 2 2 (.02 1 1 5 k  2, {k~,:~[80)~-30)~] 
x i , = ~  6kim 0)i :#iY~ \ ~o: ] \  4 0 ) , 2 - - o j 2 ] J  

a n d  

2 O')i ) xo = kiuj_2kiij( s : o.)j 
\40) i -0 ) : /  - '-o~l.  2 \14 0) j -- 0) 2 

3 kiiikijj 3 kjjjkii j ~ k.gkkjj 
0)i (.Oj k~  i,j 0)Ir 

(9)  

(lo) 
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1 y, 2 co~- oJi - wj 
_ - -  k o . k g o  k 

2 k~,~,j (~o~ + ~oj + ~ok)(o~, + oJj - ~ok)(a , ,  - oJj + o~k)(o~, - o~j - o~k) 

( 1 1 )  

for j  > i. (In this paper, we are following the conventions of [9]; our anharmonicity 
constants x~j are equal to x~ + xj~ in the notation of [8].) 

When two or more unperturbed vibrational levels are close in energy relative to 
the interaction force constant that couples them, perturbation theory breaks down. 
Such a near degeneracy, which is commonly referred to as a Fermi resonance, 
leads to a near singularity in certain terms in Eqs. (10) and (11). Following the 
method of Nielsen [8, 9], the resonant interaction is first removed from the 
perturbation-theory treatment, leading to nonsingular terms in Eqs. (10) and (1 1) 
for that particular interaction force constant. The resulting corrected anharmonic- 
ity constants yield vibrational energy levels that Harding and Ermler [14] term 
"deperturbed". In the present study, the perturbed levels are then approximated 
by the solutions of the eigenvalue problem that arises from the direct coupling 
of these deperturbed levels by the appropriate interaction force constant. This 
approach to the combination of resonant and non-resonant anharmonic effects 
is consistent with the method described by Papousek and Aliev [24], but is 
somewhat different from that proposed by Schlegel, Wolfe, and Bernardi [25], 
in which the level shifts obtained by solving the eigenvalue problem associated 
with the direct coupling of the unperturbed levels are simply added to the 
deperturbed levels. In the present study, we found that the two approaches 
generally lead to similar results. For example, in the case of the HMS surface 
there is a Fermi resonance involving modes 1 and 2, since 2w2 ~ wl (i.e. wl - 2 o 9 2  = 

534 cm -1, which is relatively small for an interaction force constant k i n =  
168 cm-1). The energy levels in the column of Table 2 labelled "p.t." thus contain 
improper contributions from the terms in the anharmonicity constants involving 
the denominator 2 2 (4w2 - aq). When such contributions are removed by the replace- 
ments [8, 9] 

2 2 2  [ ~ 1  1 ] _{k~22){8w~-3o~ _k222 -{- (12) 
\4w,] \  4w22-w 2 ] ~ 8(2w2+ w,) 

in x22 and 

2 -+-k12= 2(2w2+~o,) (13) -2k222 4o~ ~ol 

in x~2, we get the deperturbed levels listed in the column labelled "p. t .+ corr. 
(p = 0.25)". Many of the deperturbed levels are strongly coupled by the interaction 
term in the potential that involves k122, and this coupling is then included by 
solving the appropriate eigenvalue problem. The results of this procedure are 
listed in the column labelled "p.t .+corr.  (p=0 .25)+diag 'n . "  As a specific 
example, the two energy levels arising from the pair of states 1020} and 1100}, 
which exhibit Fermi resonance because of the k,22 interaction term discussed 
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here, are found by diagonalizing the 2 • 2 matrix [8, 9] 

EOd20 lk122"~ (14) 

%= er 
where a a Eo2o and E~oo are the deperturbed energies of the 1020) and I100) states, 
respectively, with all quantities in cm -1. We note in passing that if the unperturbed 
(harmonic) energies for the 1020) and [100) states were used in place of the 
deperturbed energies in Eq. (14) and the resulting level shifts added to the 
deperturbed levels, as proposed by Schlegel et al. [25], we would obtain level 
energies of 7790 cm -1 and 8285 cm -1, in very good agreement with the results 
given in Table 2. In a similar fashion, the three energy levels arising from the 
trio of states ]040), [120h and [200) are found by diagonalizing the 3 x3 matrix 
[8, 91 

( Eg40 ~/23--k122 0 / 

4k122 El2 0 4k122 , (15) 
0 4k,22 E2aoo ] 

and so on. 

In the usual application of perturbation theory to obtain vibrational energy levels 
that are compared with spectroscopic data, Fermi resonances are detected from 
large shifts of levels from their expected values. The present theoretical study, 
however, required a simple criterion for determining when Fermi resonances are 
present based only on the parameters of the potential energy surface. This was 
done by assuming that a Fermi resonance exists whenever the ratio Ik~J(og, - 2%)[ 
exceeded the minimum value p. Since Fermi resonances occur in some linear 
triatomics for values of this ratio as low as 0.22 [26], we list in Tables 2-4 results 
obtained with two different values of p: p = 0.25, for which only the k12 2 interaction 
is assumed to be resonant; and p=0.20,  for which both the k122 and k13 3 
interactions are assumed resonant. [Although 2o9 3 - -  o91 is very large (>4000 cm-~), 
the k13 3 force constant is also very large (>900 cm-1). Thus, although the ]100) 
and 1002) states are not very close in energy, the strong coupling between them 
can be treated as a Fermi resonance.] 

One further comment regarding the perturbation-theory levels is in order. The 
expressions for the anharmonicity constants given above, and hence the perturba- 
tion-theory energy levels, do not include Coriolis interactions. However, in order 
to compare the perturbation-theory results with the accurate levels for the HMS 
surface given in [18] and [19], it was necessary to include these contributions 
into the xo's. For the HMS surface, we found that the only nonnegligible 
contribution from Coriolis couplings increased the value of x23 by 26.77 cm-1; 
this amount has been included in x23 for all of the perturbation-theory results in 
Table 2. 

For the purposes of comparison, harmonic results for the vibrational energy 
levels are also listed in the last column of Tables 2-4. These were obtained from 
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the relation 

EHv2v3/hc : E foi([.)i .~_1). ( 1 6 )  
i 

In addition, the second-to-last column of Tables 2-4 gives the results of accurate 
calculations in the INM approximation. For these calculations, only the diagonal 
terms in the potential of Eq. (1) were retained, and accurate energy levels for 
the INM versions of the HMS, RB, and MSE surfaces were obtained with the 
POLYMODE program [13, 20] using the same procedure described above for 
the accurate levels of the RB surface, except that the Watson and Coriolis 
interaction terms were included for the HMS case. No convergence problems 
arose in the calculations of a sufficient number of energy levels to obtain converged 
partition functions since the only maximum in these potentials occurs at 
22 500 cm -1 (64.4 kcal/mol) in the bending mode of the RB surface. 

4. Partition functions 

We consider both the partition function with the zero of energy at the bottom 
of the potential well, 

Q(T)  = 2 ~ • exp (-E ..... JkT), (17) 
t~l v2 ~3 

as well as the partition function with the zero of energy at the ground-state level 
E o o o ,  

Q(T)  = ~ 2 2 exp [-(E~1~2~ ~-  Eooo)/kT]. (18) 
~)1 v2 v3 

The former, which is mostly determined by the energy of the ground-state level, 
is important for the calculation of equilibrium constants and for the activated 
complex method for obtaining reaction rate constants from potential energy 
surfaces, while the latter is sensitive to the energies of the excited levels. 

The partition functions obtained from the energy levels described in the previous 
section were calculated at five temperatures between 200 and 2400K, and the 
results for the three potential surfaces studied in this paper are presented in Table 
5. The values for the partition functions computed from the accurate and uncorrec- 
ted perturbation-theory levels for the HMS surface were taken from previous 
work [4, 27], while all of  the other values were obtained by direct summation in 
Eq. (17). Note that ( ) (T)  can be obtained from Q(T) by 

( ) (T)  = Q(T)  exp (Eooo/kT), (19) 

where Eooo is the appropriate ground-state energy. Because the low-energy levels 
for H20 are fairly widely spaced, only the ground-state level needs to be included 
in the summation in Eq. (17) for three-figure accuracy up to 298K, the lowest 
two levels up to 600K, the lowest five levels up to 1000K, and the lowest 40 levels 
up to 2400K. This was verified both by including a large number of  extra levels 
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Table 5. Partition functions for H20 

A. D. Isaacson and X-G. Zhang 

Surface Method" T(K) 

200 298.15 600 1000 2400 

(~(T) 

HMS 

RB 

MSE 

Accurate 
p.t. 
p.t. + corr. (p = 0.25) 
p.t. + corr. (p = 0.25) 

+ diag'n. 
p.t. + corr. (p = 0.20) 
p.t. + corr. (p = 0.20) 

+ diag'n. 
INM 
Harmonic 

Accurate 
p.t. 
p.t.+corr. (p =0.25) 
p.t. + corr. (p = 0.25) 

+ diag'n. 
p.t. + corr. (p = 0.20) 
p.t.+corr. (p =0.20) 

+ diag'n. 
INM 
Harmonic 

Accurate 
p.t. 
p.t.+corr. (p =0.25) 
p.t. + corr. (p = 0.25) 

+ diag'n. 
p.t. + corr. (p = 0.20) 
p.t. + corr. (p =0.20) 

+ diag'n. 
INM 
Harmonic 

1.00 1.00 1.02 1.12 2.04 
1.00 1.00 1.02 1.12 2.07 
1.00 1.00 1.02 1.12 2.07 
1.00 1.00 1.02 1.12 2.07 

1.00 1.00 1.02 1.12 2.06 
1.00 1.00 1.02 1.12 2.06 

1.00 1.00 1.02 1.11 1.95 
1.00 1.00 1.02 1.11 1.95 

1.00 1.00 1.02 1.12 2.05 
1.00 1.00 1.02 1.12 2.05 
1.00 1.00 1.02 1.12 2.05 
1.00 1.00 1.02 1.12 2.05 

1.00 1.00 1.02 1.12 2.04 
1.00 1.00 1.02 1.12 2.05 

1.00 1.00 1.02 1.11 1.94 
1.00 1.00 1.02 1.11 1.93 

1.00 1.00 1.02 1.12 2.1 
1.00 1.00 1.02 1.12 2.02 
1.00 1.00 1.02 1.12 2.02 
1.00 1.00 1.02 1.12 2.04 

1.00 1.00 1.02 1.12 2.13 
1.00 1.00 1.02 1.12 2.04 

1.00 1.00 1.02 1.12 2.04 
1.00 1.00 1.02 1.10 1.92 

Q(T)  b 

HMS 

RB 

Accurate 2.92 (-15) 1.78 (-10) 1.46 (-5) 1.39 (-3) 1.26 (-1) 
p.t. 3.32 (-15) 1.94 (-10) 1.52 (-5) 1.43 (-3) 1.29 (-1) 
p.t.+corr. (p=0.25) 3.44(-15) 1.99(-10) 1.54(-5) 1.44(-3) 1.29(-1) 
p.t.+corr. (p=0.25) 3.44(-15) 1.99(-10) 1.54(-5) 1.44(-3) 1.29(-1) 

+diag'n. 
p.t.+corr. (p=0.20) 2.98(-15) 1.80(-10) 1.47(-5) 1.40(-3) 1.27(-1) 
p.t.+corr. (p=0.20) 2.98(-15) 1.80(-10) 1.47(-5) 1.40(-3) 1.27(-1) 

+ diag'n. 
INM 1.82 (-15) 1.30(-10) 1.25 (-5) 1.25 (-3) 1.15(-1) 
Harmonic 1.90 (-15) 1.34 (-10) 1.26 (-5) 1.26 (-3) 1.16 (-1) 

Accurate 2.34 (-15) 1.53(-10) 1.36 (-5) 1.33 (-3) 1.24(-1) 
p.t. 2.83 (-15) 1.74 (-10) 1.44 (-5) 1.38 (-3) 1.26 (-1) 
p.t.+corr. (p=0.25) 2.93(-15) 1.78(-10) 1.46(-5) 1.39(-3) 1.26(-1) 
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Surface Method a T(K), 

200 298.15 600 1000 2400 

MSE 

p.t.+corr. (p=0,25) 2.93(-15) 1.78(-10) 1.46(-5) 1.39(-3) 1.26(-1) 
+ diag'n. 

p.t.+corr. (p=0.20) 2.54(-15) 1.62(-10) 1.39(-5) 1.35(-3) 1.24(-1) 
p.t.+corr. (p=0.20) 2.54(-15) 1.62(-10) 1,39(-5) 1.35(-3) 1.24(-1) 

+ diag'n. 
INM 1.40(-15) 1.09 (-10) 1.14(-5) 1.18 (-3) 1.12(-1) 
Harmonic 1.52 (-15) 1.15 (-10) 1.17 (-5) 1.20 (-3) 1.12 (-1) 

Accurate 1.04(-15) 8.90(-11) 1.04(-5) 1.13(-3) 1.2(-1) 
p.t. 1.06 (-15) 9.04 (-11) 1.04 (-5) 1.14 (-3) 1.14 (-1) 
p.t.+corr. (p=0.25) 1.14(-15) 9.46(-11) 1.07(-5) 1.15(-3) 1.15(-1) 
p.t.+corr. (p=0.25) 1.14(-15) 9.46(-11) 1.07(-5) 1.15(-3) 1.16(-1) 

+ diag'n. 
p.t.+corr. (p=0.20) 9.81(-16) 8.56(-11) 1.02(-5) 1.12(-3) 1.19(-1) 
p.t.+corr. (p=0.20) 9.81(-16) 8.56(-11) 1.02(-5) 1.12(-3) 1.14(-1) 

+ diag'n. 
INM 1.84 (-15) 1.31(-10) 1.25 (-5) 1.26 (-3) 1.21(-1) 
Harmonic 1.30 (-15) 1.04 (-10) 1.11 (-5) 1.17 (-3) 1.10 (-1) 

See Table 2 for a description of the methods used for the energy levels 
b Power of 10 in parentheses 

in Eq. (17), and, in the harmonic case, by comparing with the standard analytic 
result: 

exp (-hc~oi/2kT) 
Q(T)= ~ [ 1 - e x p  (-hcwi/kT)]" (20) 

i = 1 , 2 , 3  

Because many of the x 0 anharmonicity coefficients in Eq. (9) are negative, the 
levels obtained from Eq. (9) will actually decrease for sufficiently high quantum 
numbers. For the temperature range considered in this paper, we have verified 
that the partition function calculations converged at quantum numbers for which 
the levels are still increasing. 

For the partition functions computed from the accurate levels for the MSE surface, 
three-figure accuracy was obtained up to 1000K using only converged levels. For 
2400K, excited unconverged levels were included in the partition function. Various 
sets of levels obtained from different VSCF-CI  calculations were similar enough 
in their distribution to yield two-figure agreement in Q(2400), so this value is 
listed in Table 5 only to two digits. 

5. Discussion 

5.1. Energy levels 

The results in Table 2 for the 14 lowest-energy levels for the HMS surface show 
that the errors caused by the perturbation-theory approach generally increase as 
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the degree of  excitation increases, as expected. Without corrections for resonance, 
perturbation theory predicts values for the 14 lowest-energy levels which are too 
low by an average of 94 cm -1, with a ground-state energy that is too low by 
18 cm -1 and 13 lowest-energy excited levels with errors in the range - 6  to 
-295 cm -~. Correcting the perturbation-theory results for only the k12 2 r e s o n a n c e  

yields an increase in the average absolute error to 112 cm -1, with an error in the 
ground-state energy of  -23  cm -1 and those for the excited levels in the range 
-313 to +68 cm -1. Improving the approximations to the resonant excited levels 
by solving the appropriate  eigenvalue problems slightly improves the average 
absolute error to 99 cm -1, with the errors ranging from - 1 2  to - 2 9 4 c m  -1. 
However, when corrections to the perturbation-theory results are made for both 
the k~22 and k133 resonances, the average absolute error is reduced to 73 cm -~, 
with an error in the ground-state energy of only - 3  cm -1 and errors in the 13 
excited levels in the range -269  to +87 cm -1. Solving the appropriate  eigenvalue 
problems for the resonant levels actually increases the average absolute error to 
85 cm -a, with errors in the range -293 to +9 cm-~; generally speaking, only the 
energies for the states in which only the bending mode is excited are improved 
by diagonalization. For comparison,  we note that the 14 lowest harmonic levels 
for the HMS surface are (not surprisingly) all too high by an average of 260 cm -1, 
with an error of  +60 cm -1 in the ground state and errors in the 13 excited states 
in the range + l l l  to +479 cm -~. 

Similar trends can be observed in the energy-level results for the RB surface 
listed in Table 3. The errors caused by perturbation theory again generally 
increase with the degree of excitation. Without corrections for resonance, the 
average absolute error for the 14 levels listed in Table 3 is 58 cm -1, with an error 
of  - 2 7  cm -1 for the ground-state level and errors in the range -215  to +28 cm -1 
for the 13 excited levels. Correcting the perturbation-theory results for only the 
k122 resonance again increases the average absolute error, to 75 cm -1, with an 
error of  -31  cm -1 for the ground state and errors in the range -242  to +96 cm -1 
for the 13 excited levels. Improving the approximations to the resonant excited 
levels by solving the appropriate  eigenvalue problems decreases the average 
absolute error to 60 cm -1, with errors in the range -214  to +27 cm -1. Correcting 
the perturbation-theory results for both the k~22 and k~33 resonances reduces the 
average absolute error to 48 cm -1, with an error of  - 1 2  cm -1 for the ground state 
and errors in the range -200  to +115 cm -1 for the 13 excited states. Solving the 
appropriate  eigenvalue problems for the resonant levels in this case increases the 
average absolute error, to 54 cm -1, with errors in the range -218  to +47 cm 1. 
The 14 lowest harmonic levels for the RB surface are again all too high, with 
errors ranging from +60 cm -~ for the ground state to +577 cm -~, yielding an 
average error of  +347 cm -1. 

Due to different anharmonic behavior, the energy-level results for the MSE surface 
given in Table 4 exhibit somewhat  different trends from those noted above for 
the other two surfaces employed in the present study. Here we consider only the 
8 energy levels listed in Table 4 for which the accurate values are converged. 
First, the errors in the perturbation-theory approach do not clearly increase with 
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an increasing degree of excitation. Second, the perturbation-theory results 
obtained without corrections for resonance are generally better than those 
obtained with such corrections. To be specific, without corrections for resonance 
the errors range from - 2 0  to +28 cm -1, with an average absolute error of  13 cm -1 
and an error in the ground-state energy of only - 3  cm -1. Correcting the perturba- 
t ion-theory results for only the k122 resonance increases the average absolute 
error to 18 cm -1, with an error in the ground-state energy of -13  c m  -1 and errors 
in the range - 2 5  to +44 cm -1 for the excited levels. Solving the appropriate  
eigenvalue problems for the resonant levels generally increases the errors, 
especially for the I101) state, leading to an average absolute error of 27 cm -1 with 
errors in the range -93  to +18 cm -~. Correcting the perturbation-theory results 
for both the k~22 and ka33 resonances further increases the average absolute error 
to 40 cm -~, with errors in the range - 5  to +152 cm -~, but with an error in the 
ground-state energy of only +8 cm -~. In this case solving the appropriate eigen- 
value problems for the resonant levels improves all of  them, yielding errors in 
the range - 1 7  to +40 cm -~, with an average absolute error of  15 cm -a. A third 
difference between the results for the MSE surface and those for the other two 
surfaces employed in this study concerns the harmonic levels listed in Table 4. 
For the MSE surface several of the harmonic levels have energies below the 
accurate values. In fact, the error in the ground state is - 3 2  cm -a, while the errors 
in the other states range from -301 to +246 cm -1 with an average absolute error 
of  142 c m  -1. 

5.2. Partition functions 

The value for (~, the partition function with the zero of energy placed at the 
ground-state level, is sensitive to the distribution of excited-state level energies. 
Since these distributions are similar for the various sets of  perturbation-theory 
levels and for the accurate levels considered in this study, the values in Table 5 
for Q obtained from the perturbation-theory levels agree to within about 1% 
with those obtained from the accurate levels. [For the MSE surface, the distribu- 
tions of  excited levels obtained with different perturbation-theory treatments are 
different enough to display some differences in (~(2400). Because the accurate 
values for the excited levels were not converged, the slight lack of agreement 
with the accurate value for t~(2400) should not be taken seriously.] On the other 
hand, the harmonic levels generally rise much faster than the accurate values, so 
that the t~ values in Table 5 obtained from the harmonic levels are somewhat  
smaller at higher temperatures than the accurate values. 

The value for Q, the partition function with the zero of energy placed at the 
bot tom of the vibrational well, is additionally quite sensitive to the value of the 
ground-state energy. Given the good agreement between the accurate and per- 
turbation-theory results for t~ discussed above, the errors in our perturbation- 
theory results for Q are mostly due to errors in the ground-state energies, so that 
the errors in the Q values decrease as the temperature increases. In addition, 
since the ground-state level is not resonant, values of Q(T) obtained with 
corresponding sets of  non-diagonalized and diagonalized resonant levels are 
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generally the same to at least three figures. From Table 5, it is clear that the 
improvements in the energy levels (especially the ground state) obtained from 
perturbation theory lead to Q(T)  values that are much more accurate than the 
harmonic results for the cases studied here. Even without any corrections for 
resonance, the errors in the perturbation-theory results for Q(T)  for the HMS 
surface range from +14% at 200K to +2% at 2400I~ while the errors in the 
harmonic values for this surface range from - 3 5 %  at 200K to - 8 %  at 2400K. 
A similar comparison for the RB surface gives uncorrected-perturbation-theory 
errors that range from +21% at 200K to +2% at 2400K, while the errors in the 
harmonic results range from - 3 5 %  at 200K to - 1 0 %  at 2400K; corresponding 
numbers for the MSE surface are +2% at 200K to +1% at 1000K (p.t.) vs +25% 
at 200K to +4% at 1000K (harmonic). Correcting the perturbation-theory levels 
for only the k~= resonance yields Q(T) values that are somewhat  less accurate 
than those obtained without resonance corrections. The ranges of  the errors in 
the perturbation-theory results in Table 5 with the correction only for the k~22 
resonance for the HMS, RB, and MSE surfaces are +18% at 200K to +2% at 
2400K, +25% at 200K to +2% at 2400K, and +10% at 200K to +2% at 1000K, 
respectively. On the other hand, correction of  the perturbation-theory levels for 
both the k~22 and k13 3 r e s o n a n c e s  leads to substantially better Q(T)  values for 
the HMS and RB surfaces than those obtained without such corrections: the 
errors range from +2% at 200K to +1% at 2400K for the HMS surface and from 
+8% at 200K to < 1 %  at 2400K for the RB surface. However, for the MSE 
surface the errors range from - 6 %  at 200K to - 1 %  at 1000K when corrections 
are made for both the k~22 and k13 3 resonances, which are somewhat larger than 
the errors obtained without corrections for resonance. The anomalies of  the MSE 
surface were discussed above; the accuracy of  the perturbation-theory ground- 
state level obtained without resonance corrections could be fortuitous. In any 
event, it is important  to note that the perturbation-theory approach with correc- 
tions for both the kl= and k13 3 r e s o n a n c e s  leads to the best overall agreement 
with the accurate values of  Q(T)  for the three surfaces studied; except for an 
error of  8% at 200K for the RB surface, the errors obtained with this approach 
are within 6% from 200K to 2400K. 

5.3. Independent-normal-mode results 

The results for the I N M  energy levels given in Tables 2-4 show that including 
the diagonal anharmonic terms in the normal-mode potential of  Eq. (1) while 
neglecting the m o d e - m o d e  couplings is a poorer  approximation than the harmonic 
model for the three potential energy surfaces for the H20 molecule employed in 
this study. Specifically, the I N M  ground-state and average absolute errors for 
the converged levels listed in Tables 2-4 are +65 and 287 cm -1, +71 and 336 cm -1, 
and - 8 0  and 171 cm -1 for the HMS, RB, and MSE surfaces, respectively; the 
corresponding harmonic errors are +60 and 260 c m  -1,  +60 and 347 cm -1, and 
- 3 2  and 142 cm -1. For the HMS and RB surfaces, the increase in the I N M  
ground-state energies over the harmonic ones arises from the fact that the positive 
anharmonic contribution due to the asymmetric stretch dominates.  For the MSE 
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surface, the negative anharmonic contribution due to the symmetric stretch 
dominates, causing the INM ground state to be lower than the harmonic one. 
In all three cases, however, the net accurate anharmonic effects for the full 
potentials are in the opposite direction from those obtained with the INM 
approximation. 

As expected, the ground-state errors in the INM results lead to larger errors in 
the values for Q(T) listed in Table 5 than the harmonic approximation does. 
For the HMS surface, the INM errors range from -3 8 % at 200K to - 9 %  at 
2400K, compared to the range of harmonic errors of - 3 5 % at 200K to - 8 %  at 
2400K. A similar comparison for the RB surface gives INM errors in the range 
-40% at 200K to - 1 0 %  at 2400K vs harmonic errors in the range -3 5 % at 200K 
to - 10% at 2400K; corresponding numbers for the MSE surface are +77% at 
200K to +12% at 1000K (INM) vs +25% at 200K to +4% at 1000K (harmonic). 

6. Summary 

In this paper, we have presented purely vibrational energy levels and partition 
functions calculated from three rather different quartic normal-mode potential 
energy surfaces for the H20 molecule derived from the Hoy-Mills-Strey quartic 
general force field [12], the Romanowski-Bowman quartic normal-mode force 
field [13] obtained from a fit to ab initio data [15], and a quartic normal-mode 
force field for a modified version of the HzO portion of the Schatz-Elgersma 
analytic potential energy surface for the O H + H 2  system [16]. By comparison 
with accurate results obtained from vibrational CI calculations, we have deter- 
mined to what degree a standard second-order perturbation-theory treatment 
provides better results for these potential energy surfaces than the corresponding 
harmonic treatment, and we have shown that results obtained with the indepen- 
dent-normal-mode approximation are worse than the harmonic ones for the cases 
studied here. In addition, we found that removing resonance contributions from 
the perturbation-theory treatment generally leads to substantial improvements in 
the energy levels and partition functions computed in this study. Here we define 
the resonance interactions as those for which the ratio Ik~j/(coi-2wj) I exceeds 
0.20; this is consistent with the values of this ratio for several known vibrational 
resonances [26]. In fact, the deperturbed ground-state energy and the distribution 
of the deperturbed excited levels computed by this approach provided quite 
reliable zero-point energies and partition functions: for the three potential energy 
surfaces employed here, the largest error in the ground-state energy is 12 cm -1 
and the maximum error in Q(T) is 8% for the range 200-2400K. We also found 
that correcting the resonant deperturbed levels by solving the appropriate eigen- 
value problems neither systematically improves the energies of the resonant levels 
nor significantly affects the partition functions for the potential energy surfaces 
and the temperature range considered here. 

The direct summation of Boltzmann factors involving energy levels computed 
from second-order perturbation theory with the removal of resonance contribu- 
tions thus provides an efficient and reliable approach to the calculation of 
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v ib ra t iona l  pa r t i t ion  func t ions  for  the H20  molecule .  A n o t h e r  case for  which  
s e c o n d - o r d e r  p e r t u r b a t i o n  theory  has  a l r e ady  been  shown to p rov ide  a re l iab le  
ze ro -po in t  energy and  pa r t i t i on  funct ions  [4] is the  K u c h i t s u - M o r i n o  force field 

[28] for  SO2, which  is much  less a n h a r m o n i c  than  H20.  F o r  this system, the 
va lue  o f  the  ra t io  [koj/(to~-2wj)[ is 0.10 for  bo th  the k122 and  k13 3 in terac t ions ,  
ind ica t ing  tha t  ne i the r  o f  these  in te rac t ions  need  to be t rea ted  as resonant .  I ndeed ,  
s e c o n d - o r d e r  p e r t u r b a t i o n  theory  wi thou t  cor rec t ions  for  r e sonance  gives a zero-  
po in t  energy  tha t  is wi th in  1 cm -1 o f  the  accura te  va lue  and  pa r t i t i on  funct ions  
tha t  are  wi th in  1% of  the  accura te  values  f rom 200 to 2000K [4]. Because  accura te  
(i.e. V S C F - C I )  ca lcu la t ions  are  qui te  p rac t i ca l  for  t r i a tomic  molecules ,  the  ma jo r  
va lue  o f  this  a p p r o a c h  is that  it is easi ly  e x t e n d e d  to larger  systems as well  as to 
the  b o u n d  v ib ra t iona l  degrees  o f  f r e edom in t rans i t ion-s ta te  s tructures,  for  which  
accura te  ca lcu la t ions  are  not  prac t ica l .  The re l iab i l i ty  o f  this a p p r o a c h  in such 
cases, espec ia l ly  those  wi th  low-f requency  modes  and  a high dens i ty  o f  low-ly ing  
levels,  is cur ren t ly  u n d e r  invest igat ion.  A n  a d d i t i o n a l  cons ide ra t ion  for  larger  
systems concerns  the m a g n i t u d e  o f  an add i t ive  cons tan t  which  has  been  left out  
o f  the p e r t u r b a t i o n - t h e o r y  energy levels o f  Eq. (9) because  it is c l a imed  to be  
very smal l  [9]. A p r e l i m i n a r y  inves t iga t ion  has  shown that  this cons tan t  te rm can 
s ignif icant ly  improve  the p e r t u r b a t i o n - t h e o r y  g round-s ta te  energy for  la rger  sys- 
tems and  even p rov ides  some i m p r o v e m e n t  for  the H 2 0  results  p re sen ted  herein.  
The detai ls  will  be  p u b l i s h e d  in the  nea r  future.  
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